
C introduction part 3
pointers, static and dynamic memory allocation, and structures

Objectives

• Write functions that can accept and “return arrays”
• Review of pointers

• Static and dynamic arrays

• Use structures to store and pass around data

https://sieprog.ch/

https://stakahama.gitlab.io/sie-eng270/C_intro.html

https://sieprog.ch/
https://stakahama.gitlab.io/sie-eng270/C_intro.html

Review: arrays, strings, and
pointers

Pointer syntax

declare pointer of type int*

assign 2 as value to variable at pointer

“*” means different things here

but both are used in relation

to pointers

Example
values and addresses

• numeric array

• character array (string)

• character array can be
converted to and from integers

Scope

• “region” of program where a particular set of variables are defined and
used (where they have meaning)

• scopes in C:
• global – variables can be used by all functions

• local within each function (including main())

local to

main()

local to

max()

source: https://dev.to/erraghavkhanna/ ?

https://dev.to/erraghavkhanna/

Call stack

Data structure in memory that
manages active functions and flow
of execution

Three ways to pass arrays or array data out
of functions

• use static memory allocation
• (1) modify value of array passed by reference

• (2) use static declaration and return pointer from function

• use dynamic memory allocation – (3) malloc in function

• declarations
• static

• define by size

• define by values

• define by size and values

• dynamic
• define by size

static (1) modify value of array passed by
reference

static (2) use static declaration and return pointer
from function

dynamic (3) malloc in function

you have to use sizeof()

before you pass array to function

why?

Other use of dynamic
memory allocation

Contents of csv_example_files/example_input.csv

Example directory structure

csv_example.csv

Summary - defining array size

• known at time of compilation
• use array in global scope

• use static arrays in functions

• determined at runtime
• use malloc

Structures in C

Why?

• heterogeneous data

• refer to content by name (more
understandable code)

Options:

• structure of array(s) – pass by value

• array of structures – pass by
reference

Additional syntactic sugar
when we pass a pointer to the structure (note: default is to pass by value)

	Slide 1: C introduction part 3
	Slide 2: Objectives
	Slide 3: Review: arrays, strings, and pointers
	Slide 4: Pointer syntax
	Slide 5: Example values and addresses
	Slide 6
	Slide 7: Scope
	Slide 8
	Slide 9
	Slide 10: Call stack
	Slide 11: Three ways to pass arrays or array data out of functions
	Slide 12: static (1) modify value of array passed by reference
	Slide 13: static (2) use static declaration and return pointer from function
	Slide 14: dynamic (3) malloc in function
	Slide 15: Other use of dynamic memory allocation
	Slide 16: Summary - defining array size
	Slide 17: Structures in C
	Slide 18: Additional syntactic sugar

